Three Dimensional printing, is the latest addition
to dentistry. This technology is considered to be
the future that would change the manufacturing
processes.
The 3D printing process builds an object which is
three dimensional from a computer-aided design
(CAD) model. The process involved in 3D printing is
called ‘additive manufacturing’ which successively
adds material layer by layer. This technology has
created a great impact in the field of dentistry. With
advancements in three dimensional imaging and
designing technologies in dentistry, it will have
more significant effects on faster and improved
treatment outcomes. This article reviews the
various 3D printing technologies that are available,
their advantages and disadvantages and their
applications in the various fields of dentistry.
Key words: 3 Dimensional printing, Additive manufacturing, Computer aided design (CAD), Applications in dentistry
Three Dimensional printing also called as additive
manufacturing was founded back in the year 1980
but has become mainstream more rapidly in last
decade. It all started as Charles Hull used a 3D
printer to print, a 3D object. A process by which
solid three dimensional objects are made from
a digital file (present as a STL file) is called a
3D printing. STL is called as surface tesselation
language file or standard triangulation language.
This digital file is processed by the 3D printer and
it prints by joining it, followed by sintering, bonding
and polymerizing elements at a smaller volume.1
The term “3D printing” is not new. Excel Jon was
the first who treated a person using 3D printing in
the year 1999, with the material added together
typically layer by layer.2
This article explains the
significance of 3D printing in dentistry, and in-turn
how dentistry helps advancements in 3D printing.
3D printers are devices that would not function
without computer-aided design (CAD) software
that allows objects, and whole assembly units
to be designed in a digital environment. CAD software has been increasingly used and is
been seen in industrial sector, engineering, and
manufacturing factories, and it has also become
a common equipment in the dental laboratory.
It has even become a daily order in many of the
dental surgeries conducted these days.3
Advances in computer and software applications
are the main factors that brought advances in 3D
printing. We must have ready access to digital data
in the form of computed tomography (CT) data,
intraoral or laboratory optical surface scan data,
cone beam computed tomography (CBCT) data for
3D printing to have full application in dentistry.4
The advancements in CBCT and optical scan
technology, have brought revolutionary changes
in various aspects of dentistry, particularly
in restorative and implant dentistry. These
technological tools are available to dentists and
dental technicians, who have an understanding
of technology to use them. Dentistry has a long
connection towards subtractive manufacturing
which is more commonly called ‘milling’. It is the
process by which an object is formed by reduction
of material.5
The CAD CAM used to mill copings and crown-bridge frameworks is now a day-to-day procedure
in modern dentistry.3
Modern day dentistry now
uses CAD CAM and has become an alternative to
the metal casting alloys.6
This technology reduces
the intensity of labour and permits the use of
materials which would be difficult to use, hence
it allows the Dental personnel to concentrate more
on the creative aspect of the process than on the
manufacturing aspect of the process.7
The Dental
personnel will have to have a high level of precision
to deal with the complexity of the restoration.8
But
CAD-CAM makes the workflow more simplified
and also with increased precision. 3D printing,
however, prints and aids in the manufacturing of
complex structures in a wide range of materials
to have desirable properties in both Dentistry and Surgery.9, 10
Various types of 3D printers utilizing different
techniques for 3D printing are available. The
choice of 3D printer will depend on the type of
application at stake.
A stereolithography is based on the use of a
scanning laser to build parts in a layer by layer
fashion. This technology uses an ultraviolet laser
curable polymer resin (liquid) contained in a
vat and a laser to build the object’s layer one
at a time. A complete 3D object can be formed
with the supporting structures. These supporting
structures are required to hold the object because
it floats in the vat (basin) filled with polymer
resin, later which the supporting structures can
be removed manually. The advantages include
rapid fabrication, ability to create complex shapes
in high resolutions, lower cost if the material is used
in bulk.11 This technology is only available with
light cure polymers and hence it is a limitation.
It can cause skin reactions, and may be irritant
when contacted or when inhaled. It has a limited
shelf life. They cannot be sterilized and it comes
at a very high cost.
A layer by layer curing of the polymer by an inkjet
printhead that jets out a light sensitive polymer
onto a platform.12 They are relatively fast, they
provide high-resolution, quality and better finish.
There are multiple materials that are available in
various colours and have a wide range of physical
properties with a lowered cost of technology.
Elastic materials can also be printed using this
technology.11 The disadvantages include skin
irritation caused by a tenacious support material
and it is very tough to remove completely. They
cannot be heat sterilised and the cost of the materials is higher.
A layer by layer curing of the liquid resin is done
by a projector light source. The built object is
upside down on an incremental platform which
is elevated. There are four main components in
DLP, namely, Digital light projector (Light source),
Digital Micromirror Device (DMD), Vat (basically
a tank filled with resin) and a building platform.11
The advantages are good accuracy, relatively fast
processing, smooth surfaces and economical.
There are some disadvantages like the support
materials must be removed for better outcomes,
the resin can be sensitive to the skin and may be a
potential irritant to the skin on contact. They have
a limited shelf life (one year, if stored properly)
and they also have a limited vat life and it cannot
be heat sterilised and it comes at a higher cost.
Binder Jetting is also an additive manufacturing
process developed in the year 1993 at
Massachusetts Institute of Technology. In this
type, powder is selectively deposited on the powder
bed and then these areas are bonded together
forming a layer one at a time. Materials such as
sand, ceramics and metals are more often used in
Binder jetting. They come in a granular form. It is
built on a descending platform in a layer by layer
fashion. The advantages are lowered cost of the
materials and equipment, and it can be printed in
various colours. The un-set material provides good
support and the process is relatively faster with
safer materials. Limitations include low strength,
messy powder, poor resolution and cannot be heat
sterilised or soaked.13
It was first found in the 1980s by Dr. Carl Deckard.11
Fine powder material is fused layer by layer to build the structures. A new material is formed as
the bed bends down incrementally and an evenly
spread new layer is formed over the surface.14
The object is built layer by layer on the powder
bed. The scanning laser then sinters the powder
layer by layer on the descending bed. A wide
range of polymeric materials including elastomers,
composites and nylon can be printed. Strong parts
can be manufactured through SLS. Polymeric
materials also come at a lowered cost if used
in large volumes. The advantage of SLS is that
the support structure is not required because
the untouched powders after each cross section
scanning itself will act as a support. The main
disadvantage is the requirement of a significant
infrastructure, for example, the need of compressed
air and proper climate control. It creates messy
powders, inhalation risks, increased cost of the
technology and it produces a rough surface.14
It is the first 3D printing technology. Torabi K et al
used this for their first medical model in 1999. The
first FDM was introduced by Scott Crump in 1980’s.
An FDM printer uses a robotic gun fitted with an
extruder which is either traverse on a platform
which is stationary, or on a platform that is able
to move below an extruder that is stationary. The
Objects in FDM technique is ‘sliced’ in a layer by
layer manner by the software and the coordinates
are then transferred to the printer. The nature of
the material must be thermoplastic. Polylactic
Acid (PLA) and Acrylonitrile Butadiene Styrene
(ABS) are the frequently used materials. PLA is
referred to as polymer polylactic acid. The speed
at which the material travels from the extruder,
the rate at which it flows and also the size will
determine the accuracy. FDM printers are available
in more expensive and accurate varieties. It also
has applications in studying anatomy by helping
make models and has lesser applications in Dentistry and surgery.
It was developed in the year 1994 by Rapid Product Innovations (RPI) and EOS GmbH. This was the first method in which metal parts can be produced in single process. DMLS uses a high power laser beam to melt the metal powder (Free of flux agents or binders) to build the metal parts same as that of the original material. Advantage of DMLS is that the metal parts can be built with higher precision because of the smaller diameter of the metal powder. Materials that are used in DMLS include bronze, stainless steel, alloy steel,cobalt-chrome, aluminum, tool steel and titanium. In addition to the functional prototypes, DMLS is more often used to produce medical implants and rapid tooling. The DMLS can be performed by 2 different methods,
Unlike other technologies, 3D printing technology demands for higher quality materials to get the desired outcome with their respective properties same as that of their original materials. For a wide range of workers like suppliers, purchasers, and end-users of the material are involved to meet this requirement. The materials that are used in 3D printing include a wide variety, namely
The dental industry has been revolutionized by
3D printing in last decade. Different applications
of 3D printing have been developed to restore
missing teeth.
It is applied across a wide of applications that
stretch across fields such as medical modelling,
making of surgical guides, in prosthodontics and
implantology, restorative dentistry, in making
orthodontic appliances, and also in manufacturing
instruments. The 3D printing technology has been
adopted in this fields mainly because of the
improvements in high-end imaging technologies
like CT scans. It has an inherent advantage over
the present computer-aided design/computer-aided manufacturing milling technique.
Besides commercial software (some programs
require an annual subscription fee), free design
software is also available. These programs can
be used to design and 3D print:
Dentists have found ways to implement 3D printing
into their work, though a few applications, in
particular, and have become universally popular.
Oral surgery- Dentists can print a model of
the patient’s mouth easily, and can use this to
verify that their crown, implant, or aligner will
fit with precision.32 It will only require a simple
intraoral scan. They can also crosscheck their work
before surgical phase of dental implants. These
are simple yet useful.33, 34 Preoperative acrylic
model in case of maxillofacial defects and a wide
craniofacial defects for better treatment planning.
In case of fractures, morphological reconstruction
of bony defect area and customised reconstruction
plates can also be produced using 3D printing
technology.35 Orthognathic surgeries can also be
planned and performed with the help of 3D printed
surgical wafers and dental splints.
Prosthodontics- With the use of cobalt- chromium
alloy it is possible to fabricate a perfect fit
removable partial framework. Thereby opening
the way for the construction of the removable
framework without the need for the investment
and casting procedures using 3D printing
technology.36 A 3D printing fabrication method
called “Robocasting” is used for the fabrication
of the fixed partial dentures.37 With the help of
Inkjet printing technology, it is possible to build
up high strength zirconia restorations with a
density of 96.6%.38 This technology is superior to
the CAD/CAM milling as it overcomes the issues
like wastage of the materials and accuracy.38
Restorative dentistry- The conventional procedure
for fabrication of crowns is time consuming. 3D
printing cuts down the time of fabrication. The
Dentist can just scan the broken tooth and 3D
printed crown can be fabricated immediately. This
can be done in the Dental office in a lesser than
30 minute time frame using a CNC technology
and special resin.39, 40 Temporary crowns can be
fabricated using polyjet 3D printers with greater
accuracy than the conventional counterparts.41
Guided Endodontics- For patients with calcified
canal and apical pathologies, special drills and
surgical templates can be made using 3D printing
technology. This guided endodontics makes it
easier to locate canals and prevent perforations,
thereby making it minimally invasive.42
Implantology- 3D printed titanium implants
and zirconia implants have gained popularity
in recent days. These 3D printed implants
have shown successive clinical outcomes in
replacement of single missing tooth.43 In situations
where conventional implants cannot be placed,
customized dental implants can be printed using
Selective laser melting (SLM). These customized
implants have shown better clinical results
(adequate density and accuracy).44
Surgical guides- 3D printed surgical guides help
in accurate placement of the dental implants
in the preplanned site. Non-guided surgery can
be performed using implant drilling guides with
increased precision. Surgery for craniofacial
synostosis can be performed with the help of 3D
printed guides, which provides information about
the osteotome.45, 46
Digital Orthodontics- Dentists can perform a
simple scan of the patient’s mouth and print an
aligner similar to an orthodontic appliance with
holes where the implants are to be placed with the
help of softwares available in the market. These
are produced with the same resin used to make
aligners but at quicker pace. Transparent aligners
and night guards are the common applications
of 3D printing.47
Maxillofacial prosthesis- Both hard and soft tissue
reconstructions can be done with the help of 3D
printing technology. 3D printed implants are
used in the reconstruction of hard tissue defects
(zygomatic bones, mandible, temporal bones,
calvarial bones) and cosmetic corrections can also
be achieved with this 3D printing technology.48
The profession has accepted digital manufacturing
technologies. The use of CAD/CAM technology
along with intra oral and CBCT scanners are
becoming more and more common in the dental
labs, and dental surgeries. In recent days dentists
and dental technicians are becoming well
acquainted with this digital technology. Subtractive
manufacturing preceded additive manufacturing
technology. The digital technology allows easy
procurement of three dimensional scanned data
enabling incorporation of fine details such that
the output is made customizable.49
In dentistry, 3D printing already has a wide
range of applicability, through which many new
treatments and exciting approaches are made
possible. Till date the national regulatory bodies
haven’t implemented any guidance in the use of 3D
printing in the field of dentistry and in surgery, but
this technology needs an appropriate set standards
at its earliest.
The development in this technology, its access
to the intra oral scanner, computer-aided design
software and raw computational power has made
the use of this 3D printing technology practical.
And the commercial and public interest towards
this digital technology has raised awareness and
improved access to the 3D printing apparatus and
the resources.
A large number of new material options are
available for the production of restorations. This
became possible only after the introduction of the
milling technology. 3D printing has a wide range
of indications in the field of dentistry. It can be said that this profession has a broader experience
in these 3D manufacturing technology than any
other profession.49
The most commonly used technologies are
selective laser sintering (SLS), material jetting (MJ),
Stereolithography (SLA), and fused deposition
modelling (FDM). The SLA technology is the most
commonly used technology of 3D printer in dentistry.
It uses printable resin material that is cured
layer by layer. The disadvantage is the scarcity
of biocompatible resins. Additional challenges
are the use of photoinitiators and radicals that
are cytotoxic. With FDM technology the main
disadvantage that it cannot be used in dentistry
as the accuracy is questionable when compared
with resin based 3D printers. Photopolymer jetting
can be used to make study models and is also
quiet cheap. But the disadvantage is that the
tenacious support material is difficult to remove. It
also cannot be heat sterilized. With powder binder
the process is relatively fast and the materials are
safer to use.
CAD software should be handled by well-trained
and computer literate individuals. But in the coming
days there won’t be any need for these operators
because the softwares are becoming more and
more user- friendly. The key future developments
apart from the obvious benefits of lowered costs,
faster manufacturing process, quicker, lesser
invasive procedures for the patients add to the
strength of 3D printing in ceramic materials with
staining and digital coloration, the reduction in
the steps of the post-processing that is needed
for metal parts, and the integration of milling/
machining of 3D printed metal parts into the metal
printing workflow.
Evolving digital technology has increased the
awareness and the use of these technologies,
with the opportunity for mainstream use of 3D
printing technology in the dental laboratory, and
in surgery. With much more development in this
3D printing technology, including the development
of individual items of equipment and design software that help create a smooth, rigorous and
streamlined workflow. The use of this technology
is going to be extensive.50
This new technology creates room for new
opportunities to be more creative in developing
new materials, less invasive, less costly with more
predictable procedures and outcomes for the
patients. And we must also avoid being entied
by this creative aspects of digital technology.
A definite standards are needed for this
digital technology for the better outcomes and
development. Despite the numerous benefits such
as faster and accurate service, cost-effective,
reduced fabrication time, accurate sizing, lesser
material wastage, additive manufacturing has
certain limitations like slower build rates, higher
production costs, the considerable efforts in its
application design and setting up the process, post
processing requirements, discontinuous process
production, its limited components and small built
volumes it a field that needs further research on
its application in each aspect of dentistry.
3D printing has impacted dentistry in all aspects.
At present this technology focuses on planning of
implant placement and the indirect production of
restorations and aligners used in Orthodontics by
printing the moulds for these objects, and also
personalized tissue engineering scaffolds are
being created for use in oral surgery, which serve
as carriers for growth factors and other bioactive
molecules including cells.
Thus, with this 3D printing technology, it is
possible to make one or complex geometrical
forms accurately from the available digital data,
with a variety of materials, locally or in industrial
centers. Almost everything can be made with this
technology for our patients but the real challenge
is no single technology is sufficient for all our
patients’ needs. Despite all the advantages and
development, the need for the health and safety protocols must also be considered. So it is very
clear that this 3D printing technology will have
an increasing importance in the field of dentistry.